CLOSING ARGUMENTS TASK CARDS TEACHER GUIDE

Given: $\angle 4 \cong \angle 6$ Prove: $\angle 5 \cong \angle 6$

Statement:	Reason:
1. ∠4 ≅ ∠6	1. Given
2. ∠5 ≅ ∠4	2. Vertical Angles Theorem
3. ∠5 ≅ ∠6	3. Transitive Property

*A paragraph proof has the same information as a two-column proof, but the statements and reasons are phrased in complete sentences.

Given: $\angle 1 \cong \angle 3$ Prove: $\angle 2 \cong \angle 4$

Statement:	Reason:
1. ∠1 ≅ 3	1. Given
2. m∠1 + m∠2 = 90°	2. Definition of Right Angles
3. m∠3 + m∠4 = 90°	3. Definition of Right Angles
4. m∠1 + m∠2 = m∠3 + m∠4	4. Transitive Property
5. ∠2 = ∠4	5. Subtraction Property
6. ∠2 ≅ 4	6. Definition of Congruent Angles

Given: ∠AEC is a right angle

∠BED is a right angle

Prove: ∠AEB ≅ ∠CED

Statement:	Reason:
1. ∠AEC is a right angle	1. Given
2. ∠BED is a right angle	2. Given
3. m∠AEB + m∠BEC = ∠AEC	3. Angle Addition Postulate
4. m∠AEB + m∠BEC = 90°	4. Definition of Right Angles
5. m∠BEC + m∠CED = ∠BED	5. Angle Addition Postulate
6. m∠BEC + m∠CED = 90°	6. Definition of Right Angles
7. m∠AEB + m∠BEC = m∠BEC + m∠CED	7. Transitive Property
8. m∠AEB = m∠CED	8. Subtraction Property
9. ∠AEB ≅ ∠CED	9. Definition of Congruent Angles

Given: \overrightarrow{GE} bisects \angle DGF AF intersects BE and CD

Prove: $\angle 1 \cong \angle 2$

Statement:	Reason:
1. <i>GE</i> bisects ∠ DGF	1. Given
2. m∠3 = m∠2	2. Definition of Angle Bisector
3. m∠3 = m∠1	3. Vertical Angles Theorem
4. m∠1 = m∠2	4. Transitive Property
5. ∠1 ≅ ∠2	5. Definition of Congruent Angles

Given: $\angle 3 \cong \angle 4$ Prove: $\angle 1 \cong \angle 2$

Statement:	Reason:
1. ∠3 ≅ 4	1. Given
2. ∠1 and ∠3 make a Linear Pair	2. Given
3. ∠4 and ∠2 make a Linear Pair	3. Given
4. m∠1 + m∠3 = 180°	4. Definition of Linear Pair
5. m∠4 + m∠2 = 180°	5. Definition of Linear Pair
6. m∠1 + m∠3 = m∠4 + m∠2	6. Transitive Property
7. m∠1 + m∠3 = m∠3 + m∠2	7. Substitution Property
8. m∠1 = m∠2	8. Subtraction Property
9. ∠1 ≅ ∠2	9. Definition of Congruent Angles

Given: $\angle 1 \cong \angle 4$ Prove: $\angle 2 \cong \angle 3$

Statement:	Reason:
1. ∠1 ≅ ∠4	1. Given
2. ∠1 and ∠2 are Vertical Angles	2. Given
3. ∠3 and ∠4 are Vertical Angles	3. Given
4. m∠2 = m∠1	4. Vertical Angles Theorem
5. m∠4 = m∠3	5. Vertical Angles Theorem
6. m∠2 = m∠3	6. Transitive Property
7. ∠2 ≅ ∠3	7. Definition of Congruent Angles

